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■ Electric Dipole Moment  d  
Energy shift of a spin particle in an electric field  

■ Non-zero EDM : P&T (CP through CPT) violation  
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Introduction

→ HEDM is CP-odd !

→ HEDM is P-odd



199Hg spin precession (UW) [Graner et al, 2016] 
Ultracold Neutrons in a trap (ILL) [Baker 2006]   

Nucleon EDM Experiments

|dHg| < 7.4⇥ 10�30 e · cm
|dn| < 2.6⇥ 10�26 e · cm

Current nEDM limits:

Figures from S.Kawasaki (KEK)

Progress on the Nucleon EDMs on a Lattice Confinement XIII, Maynooth, July 31-Aug 6, 2018

    

Sergey N. Syritsyn

Experimental Outlook

Future nEDM sensitivity : 
1–2 years : next best limit? 
3–4 years : x10 improvement 
7-10 years : x100 improvement

Moore’s Law for Neutron EDM Searches

6

10-28 e cm
CURRENT LIMIT <300
Spallation Source @ORNL < 5
Ultracold Neutrons @LANL ~30
PSI EDM <50 (I), <5 (II)
ILL PNPI <10
Munich FRMII < 5
RCMP TRIUMF <50 (I), <5 (II)
JPARC < 5
Standard Model (CKM) < 0.001

[B.Filippone's talk, KITP 2016]

Current nEDM limits: 
 
[Baker et al, PRL97: 131801(2006)] 
 
[Graner et al, PRL116:161601(2016)]

|dn| < 2.9⇥ 10�26 e · cm

|dn| < 1.6⇥ 10�26 e · cm

Other experiments: light nuclei in storage rings, octupole-deformed 225Ra, etc
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Fig. 1. Flow diagram of the dependence of the elementary level P,CP-odd processes on the EDMs of composite systems, whose
EDMs can be measurable. “RGE” means renormalization group evolution and “PQM” means Peccei-Quinn mechanism.

negligible due to the small neutrino mass. If the neutrinos are
Majorana fermions the effect of additional CP phases can gen-
erate the electron EDM from the two-loop level, and a larger
value will be allowed for de [62,63,64,65].

Purely gluonic CP-odd processes such as the θ-term or the
Weinberg operator are also known to be very small. The θ-term
generated by the CKM phase is θ̄ ∼ 10−17 [66,67], which yields
a nucleon EDM of |dN | ∼ 10−33e cm. The Weinberg operator
gives an even smaller nucleon EDM, of order 10−40e cm [68].

In the strongly interacting sector, the most widely accepted
leading hadronic CP violation due to the CP phase of the CKM
matrix is generated by the long distance effect. The long dis-
tance contribution of the CKM phase arises from the interfer-
ence between the tree level strangeness violating |∆S| = 1 W
boson exchange process and the penguin diagram (see Fig. 2),
which forms the Jarlskog invariant (7). From a naive dimen-
sional analysis, the nucleon and nuclear EDMs are estimated
as d ∼ O(αs

4πG
2
FJΛ

3
QCD) ∼ 10−32e cm, which is larger than the

contribution from the short distance processes (quark EDM,
chromo-EDM, Weinberg operator, etc). Previous calculations
of the nucleon EDM are in good agreement with this estima-
tions [69,70,71,72,73,74,75,76,77,78].

The CP violating effects in the SM exhibit an EDM well
smaller than the experimental detectability, and a large room
is left for the discovery of new source of CP violation BSM.
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Fig. 2. Tree level |∆S| = 1 W boson exchange diagram (left)
and the penguin diagram (right).

2.3 Sources of CP violation from BSM physics

In many scenarios of BSM, large EDMs are predicted, because
of higher order contributions that can arise at the one- or
two-loop levels. These contributions are overwhelmingly ex-
ceed over the loop suppressed SM contribution. In Fig. 4, we
present the typical lowest order CP violating processes of BSM
contributing to the EDMs at the elementary level. In this sub-
section, we would like to elaborate several such well motivated
candidates of BSM which can generate EDMs.

Important bottleneck 
of the EDM calculation!

Role of (lattice) QCD : connect quark/gluon-level 
(effective) operators to hadron/nuclei matrix 
elements and interactions (Form factor, dn) 

Non-perturbative determination is important  

→ Lattice QCD calculation!

Nucleon EDM [N. Yamanaka, et al. Eur. Phys. J. A53 (2017) 54, Ginges and Flambaum Phys. Rep. 397, 63, 2004]



dim=4,

Effective CPV operators

✓QCD

dim=6, Weinberg three gluon

dim=5, e, quark EDM

dim=5, chromo EDM

                        :  Strong CP problem 
quark-chromo EDM Dim=5 operators suppressed by             → effectively dim=6,  
quark EDM … the most accurate lattice data for EDM (~5% for u,d) 
cEDM and Weinberg ops. are ongoing.  [T. Bhattacharya, plenary talk] 
Lattice QCD calculations are important to constrain θ, cEDM etc.

+
X

C(4q)
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(4q)
i dim=6, Four-quark operators
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Calculating CP-odd interaction on the lattice

CP-violating interaction on lattice 
Linearization of CP-odd interaction (e.g.：θ-EDM)

e�SQCD�i✓Q = e�SQCD
⇥
1� i✓Q+O(✓2)

⇤

hOi��CP = hOiCP�even � i✓hQ · OiCP�even +O(✓2)

(CP-even) (CP-odd)

CPV operator : Q, cEDM, etc…,   θ << 1 

P, T-odd form factor [E. Shintani et al 2005,  F. Berruto et al 2015, A. Schindler et al, 2015, C. Alexandra et al, 2015, J. Dragos et al, 2019] 

hp0,�0|Jµ|p,�i = ūp0,�0


F1(Q

2)�µ + F2(Q
2)
i�µ⌫q⌫
2mN

� F3(Q
2)
�5�µ⌫q⌫
2mN

�
up,�

P, T even P, T odd

Need Q2 →０ extrapolation 

Problem: Prior to 2017, a spurious mixing between EDM and 
magnetic moments in all previous lattice computations of nucleon 
form factor.



CP violating interaction induces a chiral phase :  

This mixing angle α has to be calculated, and rotated away to get “net” 
CP-violation effect. 

(F2 + iF3�5) = e2i↵�5(F̃2 + iF̃3�5), ,
(
F̃2 = cos (2↵)F2 + sin (2↵)F3

F̃3 = � sin (2↵)F2 + cos (2↵)F3

[Previous “lattice” parametrization prior to 2017]

Spurious mixing problem in lattice form factor method [M. Abramczyk, et al, 2017]

Previous lattice EDM results (prior to 2017) were subject to large 
contamination from F2,3 mixing.

h0|N |p,�i��CP = ei↵�5up,� = ũp,�

¯̃up0,�0


F̃1�

µ + (F̃2 + iF̃3�5)
i�µ⌫q⌫
2mN

�
ũp,� = ūp0,�0


F̃1�

µ + e2i↵�5(F̃2 + iF̃3�5)
i�µ⌫q⌫
2mN

�
up,�
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F1�

µ + (F2 + iF3�5)
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2mN

�
up,�
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ũp,� = ūp0,�0


F̃1�

µ + e2i↵�5(F̃2 + iF̃3�5)
i�µ⌫q⌫
2mN

�
up,�
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�
up,�

α is mixing angle ( CP-violating mass correction)

is a solution spinor of the free Dirac equation: ũp (/p�mNe�2i↵�5)ũp = 0



Correction is simple: 

[M. Abramczyk, et al, 2017]Reanalysis of “lattice” θ induced EDM

[ETMC 2016]

[Shintani et al 2005]

[Berruto et al 2006]

[Guo et al 2015]

Removing spurious contributions : no signal of EDM  
→ consistent with phenomenological estimates 
How to improve the signal?



Noise reduction technique for θ-induced EDM



Constrain Q sum to fiducial volume for θ-EDM :  

 in time around current                                     

 4d spherical around sink 

 4d “cylinder” 

 in time around source        

Noise reduction technique for θ-EDM 

|tQ � tJ | < �t

|xQ � xsink| < R

VQ : |~x| < rQ, ��tQ < t0 < T +�tQ

[E. Shintani et al (2015), B. Yoon et al (2019)]

|tQ � tsrc| < �t [J. Dragos et al (2019) ]

[K. -F. Liu et al (2017)]

[S. Syritsyn et al (2018)]

Topological charge: Q ∼
∫

V4

GG̃, ⟨Q2⟩ ∼ V4

Q ⇠
Z

VQ

d4xq(x)

Selected recent progresses for θ-EDM will be shown. 

(Statistical error2  ～ V4 )



 3-pt functions with topological charge density  

Performing the spectral decomposition  

 mixing angle α is obtained by fit analysis 

C3pt(ts) =
⌧=tsX

⌧=�ts

�C3pt(⌧) = A+Be�Ets (ts >> T )

�C3pt(⌧) ⌘ hT{N(T )Q̄(⌧)N̄(0)}i, Q̄(⌧) ⌘
Z

d3xGG̃(x, ⌧)

(1) 0 < ⌧ < T

�C3pt(⌧) =hN(T )Q̄(⌧)N̄(0)i ⇠
X

n,m

e�En(T�⌧)�Em⌧ h0|N |nihn|Q̄|mihm|N̄ |0i ⇠
X

m 6=n

cosh (�mmn(⌧ � T/2)),

(2) T < ⌧

�C3pt(⌧) =hQ̄(⌧)N(T )N̄(0)i ⇠
X

n,m

e�En⌧�EmT h0|Q̄|nihn|N |mihm|N̄ |0i ⇠
X

n

e�En⌧ , (E0 ⇠ m⌘0)

(1) 0 < ⌧ < T

�C3pt(⌧) =hN(T )Q̄(⌧)N̄(0)i ⇠
X

n,m

e�En(T�⌧)�Em⌧ h0|N |nihn|Q̄|mihm|N̄ |0i ⇠
X

m 6=n

cosh (�mmn(⌧ � T/2)),

(2) T < ⌧

�C3pt(⌧) =hQ̄(⌧)N(T )N̄(0)i ⇠
X

n,m

e�En⌧�EmT h0|Q̄|nihn|N |mihm|N̄ |0i ⇠
X

n

e�En⌧ , (E0 ⇠ m⌘0)

exponentially suppressed

1: α-improvement [J. Dragos et al, arXiv:1902.03254]

hN+|Q̄|N+i = 0 due to P sym.
(|N+i : ground state nucleon )



1: α-improvement and ChPT fit for F3  [J. Dragos et al, arXiv:1902.03254]

t = T = tsink � tsrc

Table 7: Fit ranges [tmin
s , T

2 ], over the symmetrically summed Q time ts and resulting in the improved

EDM determination Fn
3 (Q2!0)
2MN

⌘ dn, over the M-ensembles, taken from fig. 21. The unimproved results

dn from tab. 5 are included for comparison. The values determined at tmin
s di↵er by the fit results at

most by 10% of the error associated.

ensemble m⇡ = 410 MeV m⇡ = 570 MeV m⇡ = 700 MeV
fit range [6,32] [7,32] [4,32]
fitr [fm] [0.54,2.9] [0.63,2.9] [0.63,2.9]
dn [e fm] -0.0045(26) -0.0090(27) -0.0027(20)
dn [e fm] -0.0035(66) -0.0060(53) -0.0009(47)

Table 8: Fit ranges [tmin
s , T

2 ], over the symmetrically summed Q time ts and resulting in the improved

EDM determination Fn
3 (Q2!0)
2MN

⌘ dn, over the A-ensembles, taken from fig. 21. The unimproved results

dn from tab. 6 are included for comparison. The values determined at tmin
s di↵er by the fit results at

most by 10% of the error associated.

ensemble a = 0.1095 fm a = 0.0936 fm a = 0.0684 fm
fit range [3,16] [4,20] [10,28]
fitr [fm] [0.36,1.9] [0.39,2.0] [0.69,1.9]
dn [e fm] -0.0048(13) -.00393(97) -0.0044(10)
dn [e fm] -0.0043(20) -0.0063(20) -0.0023(13)

dependence of the nucleon EDMs on the pion mass is given by [49]

dp/n(m⇡) = C1 m2

⇡ + C2 m2

⇡ log(
m2

⇡

m2

N,phys

) , (40)

where C1 and C2 are fit constants. To account for the finite lattice spacing, we include an
additional fit parameter, C3,

dp/n(a,m⇡) = C1 m2

⇡ + C2 m2

⇡ log(
m2

⇡

m2

N,phys

) + C3a
2 . (41)

The additional term ensures that the EDM only vanishes in the chiral limit after taking the
continuum limit. We have performed a global fit with eq. (41) taking into account our 6 data
points from ensembles A1-A3 and M1-M3. In the four plots in figs. 22, 23, we show the EDM
results for the proton and neutron separately as function of the pion mass and lattice spacing.

Specifically, in Fig. 22 we show the extraction of the neutron (left) and proton (right) EDM
plotted against their m2

⇡ values (in MeV). The blue band shows the extrapolation using the
fit function in eq. (41), evaluated at dp/n(a = 0,m⇡). This function evaluated at the physical
pion mass is what we are interested in. In red we show the same extrapolation, where the
fit is evaluated instead at dp/n(a = 0.09 fm,m⇡), to study the role of discretization errors. In
particular, we observe an uncertainty of the EDMs at the physical pion mass that is roughly
twice larger at a = 0.09 fm. It is perhaps surprising that the uncertainty at the physical point
reduces in the continuum limit. But the reason is clear. By fitting the nucleon EDMs to the
fit function in eq. (41), the uncertainty on the fit parameters C1 and C2 is increased by the
presence of the C3 term. Now that the a2 dependence is taken into account, we can perform

28

Fit ansatz:

Non-zero signal at physical point for θ-EDM by extrapolation. 
Far from chiral regime?



Neutron EDM induced by chromo-EDM and qQCD Sergey Syritsyn

with (Möbius) domain wall action (see Tab. 1). One ensemble has unphysical heavy pion mass
mp ⇡ 340 MeV and is used to study the qQCD-induced nEDM. The reason for using a heavy pion
mass is that the effect of qQCD term is reduced at lighter quark masses (and vanishes in the chi-
ral limit), therefore physical light-quark calculations would be extremely challenging. An esti-
mate is provided in the next section. The other ensemble is generated with a physical pion mass
mp ⇡ 139 MeV and is used to calculate nucleon form factors and nEDMs induced by quark-gluon
chromo-EDMs in QCD with realistic parameters.

3. Nucleon EDM induced by the qQCD-term

Studying qQCD-induced nEDM is complicated by the statistical noise due to the global nature
of the topological charge (1.2). Its fluctuation (dQ)2 = hQ2i µ V4 grows with the lattice volume V4

and leads to large statistical uncertainty in CP-odd correlation functions (2.4,2.5). As suggested in
Refs. [8, 12], contributions to Q from distant sites may be neglected in computing nEDM. However,
spatial restriction of Q may bias EDM results, for example if the “effective” parity mixing angle a5

is different in the nucleon (2.4) and the nucleon-current (2.5) correlation functions, as indicated by
Eq. (2.6). Such difference may be produced by non-identical spatial or timelike restriction of the
partial topological charge in these CP-odd Green’s functions, which results in nucleon interpolating
operators acting on vacua with different amount of CP violation. To illustrate this point, consider
the��CP interaction that is turned on at some moment t < 0. The QCD vacuum takes some Euclidean
time Dt to evolve into the new CP-violating state |vaci ! |vaci⇢⇢CP. Nucleon operators N̄ acting on
such transient vacuum state will have time-dependent overlap hñ|N̄|vac(t)i with the new nucleon-
like states |Ñ(±)i = |N(±)i± ia5|N(⌥)i leading to ambiguity in the extracted values of the parity-
mixing angle a5 and EDFF F3. A similar argument applies to the nucleon sinks.

Figure 1: Constrained sampling of the topological
charge density (3.1) for reducing the statistical noise
in the CP-odd three-point correlation functions (2.5),
as well as the CP-odd two-point correlation func-
tions (2.4).

To avoid this ambiguity, in our study we restrict the topological charge estimator separately in
time and space to a cylindrical volume VQ (Fig. 1),

Q̃(DtQ,rQ) =
1

16p2 Â
x2VQ

Tr
⇥
Ĝµn

˜̂Gµn
⇤

x , (~x, t) 2VQ :

(
|~x�~x0| rQ ,

t0 �DtQ < t < t0 + tsep +DtQ ,
(3.1)

where t0 is the location of the nucleon source and t0 + tsep is the location of the nucleon sink.
The CP-odd correlation functions (2.4,2.5) are computed entirely inside the region (3.1) where
CP violation is present (i.e. where the reduced topological charge Q̃ is sampled). The timelike
cuts applied to Q̃ are symmetric with respect to the nucleon sources and sinks and equal in the
nucleon (2.4) and nucleon-current (2.5) correlation functions. Additionally, we restrict Q̃ sampling

3

Nf=2+1 (Mobius) Domain wall fermion, Iwasaki gauge action 
Reduced topological charge density

2. Our work
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To avoid this ambiguity, in our study we restrict the topological charge estimator separately in
time and space to a cylindrical volume VQ (Fig. 1),
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To avoid this ambiguity, in our study we restrict the topological charge estimator separately in
time and space to a cylindrical volume VQ (Fig. 1),
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where t0 is the location of the nucleon source and t0 + tsep is the location of the nucleon sink.
The CP-odd correlation functions (2.4,2.5) are computed entirely inside the region (3.1) where
CP violation is present (i.e. where the reduced topological charge Q̃ is sampled). The timelike
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m⇡ = 340 MeV

m⇡ = 410 MeV 1500 configs x 64 (AMA) samples = 96000 stat.

1400 configs x 64 (AMA) samples = 89600 stat.

convergence: �tQ � 8a
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Preliminary result: θ-EDM on physical point

33000 stat.  
           : consistent with zero.
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Sergey N. Syritsyn

Physical point : θQCD-induced EDFF F3
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33k lattice samples, ~ 30 M core-hours on Argonne BlueGene/Q 
connected diagrams only 
result compatible with zero, |F3n| ≤ 0.05 constraint 

Need x30..100 more statistics to constrain |F3n| ≈ 0.01 :  
θ-nEDM remains difficult at the physical point

483x96 mπ=139 MeV (PRELIMINARY )

EDFF F3 from constrained Q sum (the most aggressive Q cuts) Physical point 
DWF Nf=2+1 

483x96, a=0.114 fm

F3n(Q
2)



 Chiral fermion, mπ = 330 MeV (our result) : 

 scaling based on leading order ChPT: 

 Consistent with the results from QCD sum rule and the lattice result with ChPT fits.  

 To constrain |F3n|< 0.02 at mphys, we need 25 ~ 100 times statistics                                         

(δF3n/F3n~5 at physical point)  

Our naive estimate of θ-nEDM at the physical point

dn ⇠ mq ⇠ m2
⇡

(physical point)

2mN |dn| = F3n(0) ' 0.1

F3n(0) ⇠ 0.02 · ✓, |dn| ⇠ 0.002 e fm · ✓

dn = �0.00152(71)e fm · ✓ [J. Dragos et al, arXiv:1902.03254]



Short summary : lattice θ-EDM calculations

Various noise reduction techniques have been used, which in 
fact improve the signal-to-noise ratio in the form factor 
calculations. 
Clear signal at heavier mass with non-zero Q2 
Result at the physical point has 50-100% error. 

There may be a tension between chiral (and Q2) extrapolated 
value and a direct result at physical point.  
Need to understand π mass and Q2 dependence of dn. 
Constrain θ-induced nEDM at physical point is still challenging.

|dn| = O(10�3) e fm · ✓, |F3n| = O(10�2)



A new method 

Matrix element approach  
with background electric field



Lattice QCD with background constant electric field

24^3x 64 lattice minimal value of E (|n|=1)

Uniform electric field preserving translational invariance and periodic boundary 
conditions on a lattice (Euclidean imaginary electric field) 
used for the nucleon polarizability [W. Detmold, Tiburzi, and Walker-Loud, (2009)] 
No sign problem: Analytic continuation of CP-odd interaction 
consistency check of energy shift method and form factor method via cEDM 
operator.

strength of E field

charge quanta

Charge quantization due to finite volume.



 Consider 3-pt functions of topological charge density  

Performing the spectral decomposition  

3pt function with topological charge density in the presence of background electric field

This matrix element can be non-zero due to non-zero electric field, which 
corresponds to the energy shift (δE)   

Ĥ = Ĥ0 + �Ĥ, �En = hn|(�Ĥ)|ni
c.f. 1st order energy correction in the perturbation theory of quantum mechanics

�C3pt(⌧, ~E) =hN̂(T )Q̄(⌧) ¯̂N(0)i~E , (0 < ⌧ < T )

|N+, Ei

�C3pt(⌧, ~E) =hN̂(T )Q̄(⌧) ¯̂N(0)i~E ⇠
X

n,m

e�En(T�⌧)�Em⌧ h0|N̂ |n, Eihn, E|Q̄|m, Eihm, E| ¯̂N |0i

=|ZN |2e�mNT hN+, E|Q̄|N+, Ei+ (excited states)

:  ground state nucleon in the presence of b.g. electric field

hN+, E|Q̄|N+, Ei = �E = dn ⇥ ~⌃ · ~E



Numerical study



TSz± =
1 + �4

2
(1± ⌃z), Tp =

1 + �4
2

�E =
dnEz
2mN

=
F3n(0)Ez
2mN

Tr[TSz±�C3pt(T, ⌧, Ez)]
Tr[TpC2pt(T, Ez)]

= ±�E (T ! 1)

|F3n(0)| =
2mN�E

|~E|

Numerical test of Matrix element method  

Nf=2+1 (Mobius) Domain wall fermion, Iwasaki gauge action 
Topological charge : operator improvement via gradient flow  
2 gauge ensembles with two pion masses  
Mπ=330 MeV : ~1400 configs x 64 AMA samples -> 89.6k stat. 
Mπ=430 MeV : ~800 configs x 64 AMA -> 51.2 k stat. 
Background electric field : z-direction,  
Electric charge quanta:                    in units of  
Ratio method (3pt/2pt)

|E| = ±1,±2

�C3pt(T, ⌧, ~E) =hN̂(T )Q̄(⌧) ¯̂N(0)i~E ,
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Preliminary

⌧ ⌧

T = 8

|E| = 2

m⇡ = 340 MeV

Difference between spin up (positive E) and spin down (negative E) components has 
better signal. 

Good plateau. 
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Electric field dependence at mπ=430 MeV 

⌧ ⌧

Two results for |E|=1 and |E|=2 are consistent.  
High order corrections (E^2) are small.

|E| = 2|E| = 1

m⇡ = 430 MeV

Preliminary
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T dependence at mπ=430 MeV 

Consistent results are obtained for T ≧ 8.  

We obtain                                              at mπ=430 MeV             

m⇡ = 430 MeV

|E| = 2|E| = 1

⌧ � T/2⌧ � T/2

�C3pt(⌧, ~E) =hN̂(T )Q̄(⌧) ¯̂N(0)i~E , (0 < ⌧ < T )

F3n(0) =

(
0.15(2) (|E| = 1)

0.14(1) (|E| = 2)

Preliminary



Summary

Lattice computation of lattice θ-EDM is very challenging. 

Form factor methods 

Noise reduction techniques for Q-samplings have been developed in 
recent years. 

Good signal at heavier pion mass region                                                         

The error becomes larger at the physical point.  

Need to understand π mass (and Q2) dependence of F3(Q2) form factor 

A new method -matrix element approach- 

 Potentially better control of the uncertainties                                        
(no need Q2 extrapolation, no need to extend outside sink-source 
position) 

Need to study at the physical point 



Thank you


